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ABSTRACT

In decision-making under uncertainty, a robust representation of uncertainty is vital for optimal
operational and strategic solutions. We extend existing methods by utilizing Fourier decomposition
to create multivariate synthetic time series, capturing stochastic seasonal patterns while preserving
correlations. These synthetic time series are transformed into a recombining scenario tree via K-
means clustering. To enhance the resulting policy in the Stochastic Dual Dynamic Programming
(SDDP) framework, we propose an additional sampling within scenario-tree nodes to consider a
better representation of the cost-to-go function. A convergence proof for this sampling technique
is provided. Moreover, two new stopping criteria are introduced for better solution accuracy and
robustness. The first criterion extends traditional stopping rules to all scenario-tree nodes. The second
criterion enforces a minimum count of Benders cuts per node, promoting accurate and robust solutions.
Our approach is evaluated on the Spanish hydrothermal system, incorporating synthetic time series
with seasonal-trend uncertainty in optimization and simulation. Policies from traditional SDDP
and our technique were tested over a thousand realizations, demonstrating that our proposals yield
reservoir operation policies closer to the thresholds set by the operator compared to traditional SDDP.
Computational efficiency is maintained. The proposed sampling mitigates the impact of discretizing
stochastic variables into scenario trees by evaluating more scenarios per node. Our framework offers
robust policies under uncertainty through stochastic seasonal patterns by Fourier analysis, novel SDDP
sampling, and additional stopping criteria.

1. Introduction

Renewable generation plays a crucial role in the energy-
transition policies of many countries worldwide Gielen et al.
(2019). However, the decision-making process in systems
with high shares of renewable sources exhibits significant
challenges due to the inherent uncertainty of these energy
sources Fodstad et al. (2022). As a result, there has been an
increasing emphasis on researching sequential optimization
under uncertainty Roald et al. (2023). This approach yields
flexible solutions as it considers the potential outcomes of
stochastic variables while ensuring economic efficiency. The
rolling-horizon technique is utilized to make decisions at
other stages, incorporating the most recent outcomes of
uncertain parameters Sethi and Sorger (1991).

In many real-world applications, decision-making ex-
tends beyond the immediate moment and involves simulat-
ing the system’s behavior stage-by-stage. It is a key point that
the resulting operating policy can effectively handle realiza-
tions of stochastic variables that were not considered during
the optimization process and predict the behavior of strategic
variables in the future Aranha et al. (2022). Achieving this
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objective requires striking a balance between accurately rep-
resenting uncertainty and maintaining the performance of
the optimization algorithms. This study proposes a method
to enhance the operational policy in stochastic sequential
problems by improving the representation of uncertainty
without compromising the algorithms’ performance.

Multistage Stochastic Programming (MSP) is a frame-
work to model sequential decision problems involving un-
certainty. In this framework, uncertainty modeling is essen-
tial for achieving precise solutions in a reasonable time. Typ-
ically, scenario trees are used to depict uncertainty, enabling
us to formulate the system as an extended optimization pro-
gram Dupacova et al. (2000). The construction of a scenario
tree generally follows the outlined methodology below:

1. The first step involves mathematically modeling the his-
torical data. This can be accomplished using precise
models such as VARIMA models Morales et al. (2010) or
machine learning models like neural networks Vagropou-
los et al. (2016).

2. The second step entails discretizing the stochastic process
by sampling the density distribution function obtained
from the fitting process Roald et al. (2023).

3. Finally, the sample set is transformed into a scenario tree
using techniques such as clustering, moment-matching
approaches, and others Dupacova et al. (2000), Hgyland
et al. (2003), Latorre et al. (2007).
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Regarding the first step, several papers and technical
books expose exact techniques and machine-learning ap-
proaches for modeling univariate time series Deb et al.
(2017). However, extending these techniques to multivariate
time series is usually computationally expensive due to the
need to fit models that not only consider the behavior of a
single time series but also account for the influence of other
time series simultaneously Wei (2018).

Fitting multivariate time series models tends to be more
complex and time-consuming when these sequences show
seasonal patterns that depend on many previous samples.
For instance, this complexity arises when working with time
series with annual patterns and sampled at an hourly or daily
frequency. One approach to address this issue involves de-
composing the time series into a deterministic component to
represent the seasonal behavior and a stochastic component
to represent the residual part of the times series (Marulanda
et al. (2020), Talbot et al. (2020)).

In Marulanda et al. (2020), the Fourier series technique
is utilized to model the seasonal pattern of each time series,
while the residuals are modeled using the ARIMA model.
The errors of the time series are then modeled using a mul-
tivariate Gaussian distribution. This work is mainly focused
on introducing correlations among the time series into the
errors after the detrending and fitting process. However, this
study did not consider the correlations between the seasonal
patterns and the residuals. In Talbot et al. (2020), a similar
approach is employed, but in this case, the correlations
between the time series are considered in the residuals and
errors. However, this study does not incorporate the uncer-
tainty and correlations in the seasonal component. Both in-
vestigations treat the seasonal part as having a deterministic
behavior.

In this work, we build upon the ideas presented in these
two papers and propose a methodology to generate scenarios
where the generated sequences consider the multivariate
uncertainty in the seasonal component, the residual part, and
the errors while preserving the correlation between the time
series.

When uncertainty is discretized into a scenario tree, it
becomes possible to represent the system as an extended
optimization program. However, as the number of decision
stages and tree nodes increases, the computational complex-
ity grows exponentially, creating new challenges when solv-
ing large-scale problems (known as the curse of dimension-
ality). To address this issue, decomposition techniques have
been developed. These techniques divide the problem into
smaller sub-problems, where each sub-problem considers
the exact cost of that particular sub-problem as well as a
cost-to-go function that represents future costs Roald et al.
(2023).

Benders decomposition (Benders (1962)) is a widely
used technique for solving large optimization models iter-
atively. It decomposes the original formulation into mul-
tiple subproblems, making them computationally manage-
able. However, due to the curse of dimensionality resulting

from the number of stages and scenario tree nodes, reach-
ing convergence with Benders decomposition can be time-
consuming.

To address this issue, the authors in Pereira and Pinto
(1991) proposed a framework called Stochastic Dual Dy-
namic Programming (SDDP) based on nested Benders de-
composition. SDDP replaces the exhaustive search with a
Monte Carlo technique. The forward and backward steps
are performed in each iteration of the SDDP algorithm.
This approach represents the uncertainty as a stochastic
process within the optimization problem. In each iteration,
this stochastic process is sampled, allowing for the inclusion
of continuous uncertainty modeling. However, despite the
improvements offered by SDDP, solving large-scale prob-
lems can still be time-consuming.

In order to enhance the solution, there are proposals out-
lined in the literature. For example, the authors incorporated
a sampling approach into the optimization process in Penna
et al. (2011). This study employed a periodic autoregressive
model (PAR) to represent the uncertainty. This implemen-
tation resulted in a more stable solution. Another study by
the authors in Homem-de Mello et al. (2011) introduced two
sampling strategies: Latin hypercube sampling and random-
ized quasi-Monte Carlo. These techniques perform better
than the traditional Monte Carlo technique, enhancing the
algorithm’s overall performance. Both research papers aim
to enhance the algorithm’s efficiency and ensure the stability
of the initial stage solution. However, it is important to note
that these algorithms remain time-intensive, primarily due
to the structure and size of the scenario tree.

In Cerisola et al. (2012), the SDDP algorithm was imple-
mented using a recombining scenario tree. A recombining
scenario tree is a structure where certain nodes in each stage
can be combined or merged considering their subtrees are
identical. This merging of nodes helps prevent the exponen-
tial growth of the tree’s size with an increasing number of
time stages Epe et al. (2009). The Benders cuts were formu-
lated for each node at every stage, known as the multi-cut
formulation. This approach considers uncertainty in a dis-
crete form and has shown better performance than sampling
from continuous probability distributions. The scenario tree
structure also allows for easy implementation of the cut-
sharing technique. However, while discretizing uncertainty
enhances the algorithm’s performance, it may introduce
some accuracy loss compared to continuous representation.

Other enhancements to the SDDP approach have been
proposed in the literature. For instance, in De Matos et al.
(2015), the authors introduce three strategies for selecting a
subset of Benders cuts in each iteration to speed up the algo-
rithm. Not all generated Benders cuts are utilized in defining
the subproblems. Upon completion of the algorithm, the
optimal policy is determined by all computed Benders’ cuts.
The objective of this research was to enhance the algorithm’s
execution speed. Nevertheless, as concluded by the authors,
these strategies do not affect the policy.

To ensure that the algorithm in this study consistently
improves the policy at each decision stage, it is essential to
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review the stopping criteria. The most common approach is
to assess the proximity between the lower and upper bounds
of the solution. Convergence is achieved when the lower
bound falls within the confidence interval of the upper bound
of the first stage Shapiro (2011). The authors in Homem-
de Mello et al. (2011) examined this criterion and proposed
a novel one that involves controlling the type I error (a
classical stopping criterion in the SDDP technique) and the
type II error in the hypothesis test for convergence. These
criteria evaluate the convergence in the first stage of the
problem. However, when designing medium and long-term
strategies, it becomes essential to have a policy that has
converged at every node and each stage of the scenario tree.

In our research, we introduce two additional stopping
measures for the algorithm, with a focus on improving the
cost-to-go function at each stage. The first criterion involves
extending the classical criteria applied to the initial stage to
subsequent stages. The second criterion aims to represent the
cost-to-go function at each stage using a minimum number
of Benders cuts.

Considering the gaps above, our work introduces three
strategies to enhance the policy derived from solving a
stochastic optimization program. The first strategy focuses
on refining the uncertainty modeling in a multivariate space.
The second strategy pertains to the sampling approach used
in the SDDP algorithm. Lastly, the third strategy addresses
the improvement of the stopping criteria.

Given that the objective of this study is to enhance
the policy resulting from solving a stochastic program, our
contributions can be categorized into two main blocks:

1. Scenario Trees:

e When utilizing the Fourier series for modeling sea-
sonal patterns in multivariate time series, we propose
a novel approach to represent these patterns while
incorporating uncertainty. This enables the generation
of new seasonal sequences that preserve the key char-
acteristics of historical data.

e We present a comprehensive methodology for con-
structing a recombining scenario tree. This process
involves modeling historical data using multivariate
techniques and employing clustering approaches to
establish the structure of the scenario tree.

2. Optimization Algorithm:

e We introduce a sampling technique considering a re-
combining scenario tree within the Stochastic Dual
Dynamic Programming (SDDP) framework. This al-
gorithm improves the representation of stochastic pa-
rameters during optimization, leading to a more accu-
rate approximation of the cost-to-go function at each
node in the scenario tree.

e We analyze the extension of classical stopping crite-
ria beyond the first stage. This extension enables an
enhanced approximation of the cost-to-go function in
subsequent stages, thereby improving the ability to
simulate the system more effectively in the future.

This paper is organized as follows: Section 2 presents
the theoretical framework for uncertainty modeling and in-
troduces our approach to constructing recombining scenario
trees in multivariate space. Section 3 outlines the theoretical
framework of the Stochastic Dual Dynamic Programming
(SDDP) algorithm. We discuss our proposals concerning the
sampling technique, provide convergence proof for this tech-
nique, and explore the extension of classical criteria to stages
beyond the first one. Section 4 presents the application of our
recommendations to the hydrothermal scheduling problem
using the Spanish system. We also include a discussion of
the methods employed in this section. Finally, in Section 5,
we present the conclusions derived from our work.

2. Uncertainty modeling

The modeling of uncertainty is a fundamental compo-
nent of the stochastic optimization framework since it di-
rectly impacts the ability to make reliable and cost-effective
decisions among the diverse range of potential scenarios
that may emerge in the future. Uncertain variables often
display temporal and spatial correlations, which can add
complexity to the problem and require vector models instead
of univariate ones. The hydrothermal scheduling problem
exemplifies this, where natural water inflows to reservoirs
exhibit seasonal patterns and correlated behavior that de-
pends on their geographical location.

The representation of uncertainty using scenario trees is
a widely used approach for modeling stochastic variables,
applicable in unidimensional and multidimensional con-
texts. A scenario tree is a mathematical tool that discretizes
the underlying random process and provides a framework
for representing possible outcomes. It comprises a set of
nodes corresponding to different states of the stochastic
variables and a set of edges representing the probability of
transitioning from one state to another. The overall process
for generating a scenario tree typically involves two main
steps: first, generating synthetic time series, and second,
clustering or grouping the resulting data in a scenario tree
form.

For a visual representation of this process, refer to Figure
1, which illustrates the general steps in generating a recom-
bining scenario tree. Detailed explanations of this process
will follow in the subsequent sections. In Section 4.1 we
present a step-by-step procedure for modeling hydro inflow
uncertainty in the Duero, Sil, and Tajo basins within the
Spanish system.

2.1. Synthetic time series generation

Synthetic series generation refers to the process of cre-
ating artificial time series data that emulate the statistical
properties of real-world time series data. This paper employs
the approach outlined in Talbot et al. (2020) and proposes
improvements to introduce more variability into the syn-
thetic time series. The methodology is presented below
(Appendix A provides comprehensive explanations of the
equations utilized in this procedure.)
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Figure 1: Modeling Uncertainty for Stochastic Optimization

1. Standardization: The initial step in the process is to
standardize each time series by subtracting the mean and
dividing by the standard deviation. In the hydrothermal
scheduling problem, the natural water inflows to each
reservoir are influenced by the corresponding feeding
river. As a result, data is measured on various scales,
highlighting the need for standardization in this specific
case.

2. Variance-stabilizing transformation: In contrast to Talbot
et al. (2020), this study proposes to transform each non-
stationary series into a stationary one as the next step.
We employed the probability-distribution transformation
to stabilize the time series.

3. Seasonal pattern. Fourier Analysis: Further elaboration
on this step can be found in Section 2.1.1, as it constitutes
one of the key contributions of this paper.

4. Mathematical model to residuals: The residuals are de-
rived by subtracting the seasonal pattern from the time
series. Despite this, the residuals still exhibit autocorre-
lation and cross-correlations at certain lags. Traditional
techniques like VARMA models and neural networks
can be employed to capture these correlations. In this
investigation, we opted for VAR models for their easy
fitting, allowing us to incorporate a broader range of lags.

5. Generation of synthetic series: By considering the math-
ematical elements arising from the first four steps, we
can now proceed with generating synthetic time series,
as explained in Section 2.1.2.

2.1.1. Seasonal pattern. Fourier Analysis

In order to create synthetic time series, it is necessary to
replicate the seasonal trends found in real-world time series.
This can be achieved through deterministic techniques like
Fourier decomposition or stochastic methods like SARIMA
models. While stochastic methods are commonly used for
time series forecasting, their application can become in-
creasingly complex when dealing with multivariate time
series with high sampling resolution.

Given that the primary goal of our methodology is
scenario generation, we adopted the approach of windowed
Fourier decomposition. By utilizing this technique, we are
able to model the variability of the most relevant harmonics
of the time windows using multivariate probability distribu-
tions of their amplitude and phase angle. This model enables
us to generate stochastic seasonal trends that accurately
preserve the statistical characteristics of the signals. The
following is an outline of the steps involved in implementing
the proposed analysis:

e Fourier coefficients computation: Our first step is to
calculate the Fourier coefficients for each selected time
window. In this study, we have employed a year as the time
series window. This choice aligns with the observation of
cyclical patterns, such as monthly or quarterly variations,
commonly encountered in hydro-thermal scheduling ap-
plications. The formulation for calculating the discrete
Fourier coefficients is presented in Equation 1, where y;(f)
represents each dimension i of the multivariate space as
a function of time ¢, k denotes the number of harmonics
or Fourier terms, oy = ZT—” is the fundamental angular fre-

quency, and Ty, is the fundamental period, which coincides
with the length of the frame (in our case, corresponding
to one year). By decomposing the time series into frames,
we can model the amplitude and phase behavior of the
common harmonics across these windows.

Vi) =Y (ay cos kayt + by, sin kayt) (1a)
I
>, v:(t) cos kayt
ay = S0 (1b)
>, cos? kayt
/(1) sin kayt
b,-k= Ztyl()z 0 (1C)
Y, sin” ket

In order to determine which harmonics to use, we calcu-
late the energy of each harmonic throughout one cycle.
This measure enables us to rank the harmonics in terms
of their impact on the time series, from most significant
to the least. The energy of a harmonic over one cycle is
calculated using equation 2.

E = (a3 +b2) To @
ik 2k

The dominant harmonics capture the seasonal trend in-
herent in each time series. Those harmonics are the ones
that exceed a fraction of the most pertinent harmonic. To
derive non-seasonal data, we subtract this approximation
from each original sequence y;(t), as depicted in Equation
3, where k iterates across the most relevant harmonics.
Through this approach, we can eliminate the seasonal
patterns within the data, directing our attention to the
underlying variations on the residuals r;(?).

) =y =Y, (a,.& cos kayt + by sin §w0t> 3)
k
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e Multivariate probability distribution: We model the
amplitude and phase angle of the most significant har-
monics obtained in the previous step using a multivariate
probability distribution. By employing this model, we can
generate stochastic seasonal trends while preserving the
spatial correlation of the time series. The spatial correla-
tion is represented in the phase angles. In equation 4, N ]:‘
and WV, ]:D denote the multivariate Gaussian distribution for

the amplitude and phase angle for every representative
harmonic.

A= [Ag, Ag] =N/ (@, zﬁ) (4a)

P, = [aﬁf, d)ﬂ =NY (uﬁ, Z&) (4b)

Az' = (afﬁ + bi)% (4¢)
i bik

q’)z = arctan2 <a> (4d)

2.1.2. Generation of synthetic series
By considering the mathematical components arising

from the initial four steps (standardization, variance-stabilizing

transformation, seasonal pattern, and mathematical model-
ing of residuals), the process of generating synthetic series
involves the following steps:

e Generating a sequence of residuals using the residuals
model (in this study, the resulting VAR model). This is
done by recursively appending the calculated samples for
each time step to the historical series for calculating the
next sample.

e Generating a seasonal pattern using equations 1 and 4.

e Aggregating the seasonal and residual parts and applying
inverse transformations to recover the original distribu-
tion functions, means, and variances.

e Repeating this process for the desired number of synthetic
series to be generated.

Algorithm 1 provides an outline of the process for gen-
erating synthetic time series by utilizing both the seasonal
model and the VAR model for the residuals.

2.2. Generation of scenario tree

The set of synthetic time series is the input for creating
a scenario tree. In this study, our focus is on clustering
methods to construct the scenario tree. Within this frame-
work, the nodes of the scenario tree are represented by the
clusters obtained from the clustering process. The arcs of the
scenario tree are represented by the transition probabilities,
which are determined based on the number of sequences that
simultaneously belong to the initial and final nodes.

Determining the appropriate number of clusters is a
common challenge in data clustering, mainly when dealing
with high-dimensional data. In real-world applications, it is
crucial to consider the trade-off between the level of detail
captured by the scenario tree and the effort required to obtain
a solution for the stochastic optimization program.

Algorithm 1: Synthetic time series generation

/I §'S is the number of synthetic time series
1 while ss < S5 do

/I Generate residual sequence (sq())

/I'sq(t) = [sq,(?), ..., sq,(t)], where i is every
dimension

2 | sq) <[

3 while 1 < STEPS do

// Calculate sample of sequence in step ¢

// VAR model

Il N, (p., Z.) is the multivariate Gaussian
distribution for the errors

4 BN =Ar@t—1)+-+Art—p+N, (4.2,)
/I Append sample to history and synthetic
sequence
5 r(t) « £(1), sq(t) « £(¢)
/I increase step
6 te—t+1

/I Generate components for each representative
harmonic

7 A =N, <yﬁ,2£>

s | o =N, (/4@ 2£>

// Seasonal trend for each time series i

9 (=2 <a£c0s&w0t + by sinkwot) ,Vt
/I Aggregating residual and seasonal part

1y@ =y, ..., »®]

10| sq() < sq(r) +y(@), vt

/I Inverse variance-stabilizing transformation
u T (sq(r) = F~' (N (sq(1)))

/I Destandardization

2 | sq) = [sq,(00, + py. ... 5,00, + 1]

/l increase synthetic series counter
13 ss — ss+1

We employed a recombining scenario tree as a means
to model the uncertainty, and in particular, we utilized the
k-means algorithm as the clustering technique. In this case,
the data is represented in an n-dimensional space, where
each time series corresponds to a distinct dimension. At each
stage, the number of clusters is determined using the elbow
method, although other techniques like silhouette or density
methods can also be utilized. The transition probabilities
from an initial node in one stage to a final node in the next
stage are calculated by dividing the number of time series
transitioning from the initial node to the final node by the
total number of time series in the dataset.

Each node in the scenario tree is characterized by its
centroid, node probability, and the specific series that were
grouped. The node probability is calculated as the proportion
of the number of time series grouped in that node to the total
number of time series.
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The series grouped within each node play a crucial role
in the optimization process of the SDDP algorithm. By
sampling across the scenario tree, which outlines the overall
model of the stochastic process, and subsequently sampling
within each node to capture more detail of uncertain vari-
ables, we can strike a balance between solution accuracy and
algorithmic performance. This sampling technique will be
analyzed in the next section.

2.3. Highlighting the advantages of our proposal

Regarding the use of windowed Fourier series

Stochastic optimization is an important approach in
decision-making under uncertain conditions, where effective
uncertainty modeling is crucial. In this context, time series
analysis is a valuable tool for such modeling. Traditional
methods often employ the Fourier series to uncover under-
lying temporal patterns. However, these approaches may not
consistently address the localized nature of uncertainty in
non-stationary time series. Our proposal addresses this lim-
itation by leveraging the benefits of the windowed Fourier
series, aiming to enhance models for generating synthetic
time series.

By segmenting the time series into localized windows
and modeling the dominant harmonics within each segment,
we provide an adaptive and dynamic tool for enhanced
uncertainty quantification. Below, we outline some benefits
of this approach.

o Improved Interpretability: Utilizing the windowed Fourier

series lets us individually model and interpret important
harmonic components.

e Adaptive Harmonic Modeling: Our approach adapts to
the data by focusing on the most relevant harmonics.
This adaptability prevents overfitting, avoiding excessive
harmonics and leading to a more efficient representation
of the underlying signal structure.

¢ Enhanced Probabilistic Modeling: The ability to prob-
abilistically model the extracted harmonics enhances our
capacity to represent uncertainty more effectively. This
approach allows for the generation of a broader range of
potential scenarios.

e Scalability: Our method scales well to long-time series
data. Fourier series offer analytical solutions for decom-
posing complex signals into their constituent harmonic
components. These closed-form equations enable efficient
and direct calculations regardless of the length of the
time series. Using the windowed Fourier series, we can
effectively model uncertainty associated with seasonal
patterns.

¢ Quantification of Temporal Change: Segmenting the
time series allows us to capture temporal changes in
the dominant harmonics, facilitating the identification
of evolving patterns and trends. This is often hidden
when using a static Fourier series approach. This property
allows us to generate synthetic series with changes in
seasonal patterns.

In Section 4.1, we illustrate the difference between mod-
eling seasonal patterns using static Fourier series and win-
dowed Fourier series approach. Figure 8 shows that static
Fourier series may oversimplify seasonal patterns, poten-
tially neglecting the inherent variability and uncertainty
within them. Accurate seasonal pattern representation is a
key element in scenario generation, which forms the foun-
dation of the stochastic optimization framework.

Regarding the generation of scenario tree

Preserving the series grouped within each cluster after
applying the K-means method offers a crucial advantage
when constructing a scenario tree for a stochastic opti-
mization model. This approach helps maintain the essential
variability and patterns in the original dataset, which can
be pivotal for accurately representing uncertain future states
in the optimization model. Furthermore, maintaining the
integrity of these clusters ensures that the model captures not
only the central tendencies but also the diversity of potential
outcomes. This, in turn, leads to the development of a more
robust and realistic decision-making framework.

This approach not only saves time and computational
resources but also ensures that the optimization model com-
prehensively accounts for the intricacies of uncertainty. The
result is a more robust policy generated by the stochastic
optimization model.

Section 4.3 further expounds on the advantages of em-
ploying this type of scenario tree within the SDDP frame-
work.

3. Stochastic Dual Dynamic Programming
(SDDP)

Multistage stochastic programming is a framework for
modeling sequential decision-making problems that involve
uncertainty. Usually, we model the uncertainty by discretiz-
ing the stochastic process in the form of a scenario tree which
we will denote as . A general formulation for a multistage
stochastic problem is as follows:

min 3 X A1 (%)
s wel, (5)
st (XX ext Vs

In linear stochastic problems, f g" is a linear function.

The constraints X'’ can be expressed in the form A‘S"x?(w) +

B;"xfs" = bg’, where s denotes the stage, w is the index
for each node on the scenario tree, a(w) represents the
preceding node to w, p? is the probability of each node w in
the stage s, x{’ stands the decision variables at each node @
in the stage s, and A's”, B;", and b‘;’ are stochastic parameters.
The size of multistage stochastic models depends directly
on the scenario-tree size (The more stages and uncertain
parameters, the larger the mathematical model).

When adopting a multi-cut approach to Benders cuts
within the Benders decomposition framework, Equation 6
characterizes the optimization model at each node of the
scenario tree for the stochastic program.
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PO =min ¢x0+ D p0° (62)
S ceC(w)

st. Bx?=b" — A" : 1° (6b)

0 BX) +0° 2 f1 + 7l BX o (60)

x° >0 (6d)

In equation 6, ¢ represents the subsequent nodes to w, /
is the number of Benders cuts, 0¢ stands the future cost in
every subsequent node, fscfr | represents the future cost for a

specific set of decision variable values, and ”§-l|—1 represents

the sensitivity of fs"‘j_l to deviations in x{’ from the specific

values x/.

The SDDP approach follows Algorithm 2, which in-
volves iterative forward and backward steps. In the forward
step, the algorithm updates the state variables in every node
of the scenario tree. In the backward step, Benders cuts are
generated to improve the approximation of the cost-to-go
function used in the forward step.

The algorithm’s convergence is evaluated in the first
stage. A lower bound (L B) can be obtained by calculating
the operational cost in the root node plus the cost-to-go func-
tion value. Similarly, a statistical upper bound (U B) can be
computed as the average cost across all stages in the forward
step. Various stopping criteria have been proposed in the
literature to terminate the algorithm. One common criterion
is to measure the gap between the upper and lower bounds
(equation 7). The algorithm continues iterating until this
gap falls below a predefined tolerance value. Alternatively,
the algorithm can also stop when the LB falls within the
confidence interval of the U B (equation 8) Shapiro (2011).

jus—s, .
UB
B B
e |lup-2.2Y® yp,,, 2 UB 8)
v/l v/l

The SDDP framework allows us to make operational
decisions considering uncertain parameters. In many real-
world applications, it is not only the first-stage solution that
is required but also the decisions for subsequent stages.
These applications are commonly associated with design-
ing strategies in planning contexts. For example, in the
hydrothermal scheduling problem, it is crucial to determine
the amount of fuel that thermal agents should purchase for
future stages, considering the variability of natural water
inflows or gas prices. Therefore, the SDDP framework must
incorporate additional considerations to ensure an optimal
policy at each problem stage. With this in mind, we propose
two improvements to the SDDP algorithm:

e We propose to sample the elements within each node of
the scenario tree resulting from the clustering process.
This sampling occurs after sampling the scenario tree in
the forward step. In the backward step, we also sample the

Algorithm 2: SDDP algorithm

Data: Uncertainty in the form of scenario tree (£,,)
/l INITIAL VALUES
/1 is the iteration count (number of Benders cuts to be
generated)
11«1
2 CFl <0

3 while (stop == False)and (/ € £) do

// FORWARD STEP
4 forse{l,...,5}do

5 Solve problem P{” (equation 6)
// Calculate actual cost function in stage s
6 CF' <« CF"  +c¢“x®
N s—1 ss
/I Save x? in every iteration
7 xl «x®
s S
8 if s == 1 then

// Calculate the lower (L B) bound as the
optimal value of the objective function in
the root node (P,)

9 LB« CFI’ + ZCGC(I) peoc;
10 else
11 if s == S then

/I Calculate the upper bound (U B) as the
average of the total cost of all
iterations

1
12 UB « 7 Zleﬁ CFsI;

/I sample a scenario for the next stage

13 | o« rand(, (s + 1))
/l BACKWARD STEP
14 fors e {S,...,1} do
15 for Vo € Q_ (s) do
16 solve problem P (equation 6)
// value of equation 6a
17 ;Jlrl < Cfé’x?) + ZcEC(ﬂ) peo°
/ dual of equation 6b
18 rcjil « dual (B?’x;” =b® - A;”xji"f)

// STOPPING CRITERION VERIFICATION
/I compute stop criterion. Equation 7 or 8
19 stop <~ LBe [UB—-k,UB+ k]

/l increase iteration
20 l<1+1

elements within each node to generate the Benders’ cuts.
This approach enables us to consider a broader range of
values for the uncertain variables, going beyond just the
centroids resulting from the reduction process during the
scenario-tree construction, in fact this additional sampling
process improves the algorithm convergence.

e We propose new stopping criteria for stages other than

the first one. First, the algorithm should verify the gap
between the lower and upper bounds in the non-first-stage
nodes of the scenario tree. Second, it should ensure a
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minimum number of Benders cuts for the cost-to-go func-
tion in each scenario tree node, based on its probability.
These additional criteria are introduced to guarantee a
minimum level of quality in approximating the cost-to-
go function in other nodes of the scenario tree, which
cannot be achieved solely with classical stopping criteria.
The objective is to prevent premature convergence of the
algorithm, which could result in generating a suboptimal
operating policy. By incorporating these criteria, the algo-
rithm can extensively explore the solution space, leading
to a more accurate and reliable operating policy.

3.1. Proposed nodal sampling technique in SDDP
framework

As depicted in Algorithm 2, the uncertainty is repre-
sented through a scenario tree. Section II outlines the process
of constructing a recombining scenario tree using synthetic
data.

Clustering processes used to construct the scenario tree
can result in a loss of representativeness in stochastic vari-
ables. To mitigate this issue, we propose sampling the el-
ements within each node of the scenario tree during both
the forward and backward steps in the SDDP algorithm.
This additional sampling process is conducted after the
conventional sampling across the scenario tree, where a
specific node of the scenario tree is selected. Figure 2
visually illustrates these concepts. In this figure, the blue
and orange curves represent the path randomly selected
in the forward step. In the classic SDDP algorithm, the
system is evaluated at the centroid or medoid of each node
or cluster, represented by the blue point. However, in our
proposed method, the system is evaluated at any element
within each node, represented by the orange point. This
approach allows us to explore the overall representation of
uncertainty in its discrete form and capture the finer details
of the stochastic variables. By randomly selecting elements
within each node, we can better exploit the richness of the
uncertainty distribution and improve the robustness of the
solutions.

In the forward step of the SDDP algorithm, we initially
sample over the scenario tree, similar to the classic approach.
In the proposed sampling technique, we conduct additional
sampling within each node or cluster. This allows us to con-
sider a broader representation of uncertainty by capturing
more detailed variations within the node. By incorporating
this subsequent sampling process, we aim to mitigate the
impact of discretization and enhance the accuracy of the
solution to the stochastic program.

In the backward step, we introduce a sampling process
where we randomly select an element within each node
of the scenario tree. Importantly, the element sampled in
the backward step does not necessarily coincide with the
element sampled in the forward step. By incorporating these
additional samplings, we increase the number of possible
system states considered in the forward and backward steps.
This enables us to explore a broader range of scenarios
and generate Benders cuts in more diverse system states,
improving the robustness and accuracy of the solutions.

Output of the generation process: Different scenarios that represent
the mathematical model of the uncertainty
e Output of the reduction process: Representative scenarios (centroids)
Clusterization of the scenarios by using any metric
— Sampled forward pass. Classical SDDP method
— Sampled forward pass. Proposed sampling

Figure 2: Scenario tree

Appendix B provides a convergence proof for this pro-
posed nodal sampling method.

3.2. Convergence criteria

The classical convergence criteria assess the quality of
the solution in the first stage; however, more measures must
be implemented to get an optimal policy on the whole
horizon. In this way, we state two additional verifications to
stop the algorithm:

e Extend the gap verification on the lower and upper bounds
(equations 7 or 8) beyond the initial stage to all subsequent
stages in every scenario tree node. This approach treats
each node similarly to the first node. However, it is im-
portant to note that the initial conditions of the problem in
nodes beyond the first one may exhibit significant changes
during the initial iterations.

UB® - LB®
s N

UB <e Vo eQ, )

e Establish a minimum number of Benders cuts in every
node of the scenario tree (/,,,), which depends on its occur-
rence probability (p,,). This criterion imposes a minimum
representation of the cost-to-go function in every scenario
tree node. This representation is more accurate in nodes
with higher probability.

1> p°L, Vo € Q, (10)

3.3. Improvements to SDDP algorithm

The inclusion of proposed nodal sampling and the other
two stopping criteria enhance the resulting optimal policy,
which will be used to simulate future scenarios in a planning
context. Algorithm 3 shows the modifications to the SDDP
approach (The numbering in Algorithm 3 is arranged to fa-
cilitate the integration of the proposed enhancements within
Algorithm 2).
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Algorithm 3: Improvements to SDDP algorithm

Data: Uncertainty in the form of scenario tree (£,).
Information about clusterized scenarios

—

[...]
while (stop == False)and (! € £) do

// FORWARD STEP
3 fors e {l,...,5} do
4 [...]

/l sample a scenario tree node for the next stage

~

13 m < rand(Q, (s + 1))
// sample a scenario inside the node
14 n < rand(m)

// BACKWARD STEP
14 fors e {S,...,1} do

15 for Vm € Q_ (s) do
/l sample a scenario inside the node
16 n < rand(m)

17 [...]

// STOPPING CRITERIA VERIFICATION

// first-stage criteria. Equation 7 or 8

19 stopl « LBe [UB -k, UB + k]

/l rest of stages criteria. Equation 9

20 stop2 — LB, € [UB, -k, UB, +k,|

// minimum Benders cuts criteria. Equation 10
21 stop3 <[, >p,L

/I global criteria to stop the algorithm
22 stop < stopl & stop2 & stop3

// increase iteration
23 l<1+1

4. Case study and results

We used the hydrothermal scheduling problem as our
experiment to test the SDDP algorithm improvements pro-
posed in this work. This model is described in the next
section.

4.1. Hydrothermal scheduling problem and
uncertainty modeling
Our study employs a model of the Spanish electrical
system, developed using information publicly available in
sources Iberdrola (2006) and CEDEX. The case study ex-
hibits the following characteristics:

4 basins, with 30 reservoirs and 38 hydropower plants,
58 thermal plants,

24 stages (24 months),

18 blocks of demand, wind and solar production per stage
(month),

e 22 multidimensional historical time series, which repre-
sent natural water inflows into the reservoirs and served
as the uncertain parameters in our case studies. Synthetic
time series were generated using these historical datasets
as a basis.

Basins

In this study, we present two basin models. The first
model incorporates the reservoir topology, enabling a de-
tailed representation of the energy interactions between hy-
dro plants. The second model represents the basin as an
equivalent hydro plant, which reduces the computational
burden. This modeling approach is commonly applied to
basins that are not the focus of the study or for which limited
information is available. This work adopts the first modeling
approach for the larger basins in the Spanish system, namely
Duero, Tajo, and Sil (figure 3), while the second approach
was applied to the remaining Spanish basins. The hydrother-
mal model presented in this study focuses on the individual
reservoirs rather than the basins themselves. Therefore, there
are no specific restrictions associated with the basins.

Reservoirs

In this study, we model the reservoirs of the Duero,
Tajo, and Sil basins, considering their hydraulic topology
Iberdrola (2006) and natural water inflows in each reservoir
from 1995 to 2018 CEDEX. Figure 3 presents a schematic
of the basins considered in this work.

1 ‘ SIL j DUERO \ TAJO \
RS‘A! RSLY :Y'RSZ L \Ykm \Y’/RTI ‘Y'RTJ
RSJY, 71& Yk&' vRSR ?’mz VRTZ 7“4

— e L ] M !
RTY YRS‘J 5 wios ue i
- 1 ‘;“m 1 * v RT6 YR‘I‘S
v v L ]
PRSI ohos YRT7
T Y 1
\Y’Rsu 7@6 AVLRN ‘Ynyux
‘V'RDS
?{n‘)

Figure 3: Topology of Sil, Duero, and Tajo basins

Figure 4 shows the interaction between two reservoirs
connected in series. The outflows from the upstream reser-
voir are considered inputs for the downstream reservoir.
Equation 11c describes the energy balance stored in each
reservoir, considering the topology of the basin and the
influence of pumping stations.

Figure 4: Reservoir modeling
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The data structure of the water inflows in CEDEX re-
quires subtracting the outflows from upstream reservoirs
from the water input to each reservoir to calculate the natural
water inflows. Figure 5 shows the annual uncertainty in
natural water inflows in the Duero, Sil, and Tajo basins.
The figure highlights that there is significant variability in
streamflows between January and June, as well as between
November and December. In contrast, natural water inflows
during the summer are low, with minimal variability.

Duero

Figure 5: Natural water inflow uncertainty. Historical data

An essential step to obtaining and validating the opera-
tional policy is to build a training and testing set using his-
torical data. The training set is used to construct the scenario
tree, which is utilized in optimization. On the other hand,
the testing set is employed to evaluate the performance of
the operational policy through simulation. Simulation holds
significant importance within the stochastic optimization
framework as it allows for testing the policy’s robustness
across various potential realizations of stochastic variables.
This emphasizes the significance of achieving convergence
across all nodes within the scenario tree, resulting in a more
accurate policy.

Section 2 describes a methodology for obtaining a sce-
nario tree from historical data. Every step of the methodol-
ogy is shown below:

o Standardization: Each time series is standardized by sub-
tracting the mean and dividing by the corresponding
standard deviation. The time series are now comparable
in magnitude.

o Variance-stabilizing transformation: We employed the
probability-distribution transformation for this case study
to stabilize the time series. Among the different func-
tions considered for our dataset, the generalized inverse
Gaussian distribution yielded the best Akaike Information
Criterion (AIC score) for the time series in this study.
The positive domain of this function makes it suitable
for modeling natural water inflows. Figure 7, blue curve,
shows the time series after executing standardization and
variance-stabilizing steps. These time series exhibit sea-
sonal components that must be considered during the
scenario generation process.

e Seasonal pattern. Fourier Analysis: In contrast to previ-
ous studies that utilized the Fourier series to represent the
seasonal pattern, we decomposed each time series using a
moving frame approach. In this case, the frame length was
set to one year, with the sine-cosine basis having a period
of 365 or 366 days, depending on whether it is a leap
year or not. We analyzed the time series with thirty (30)
harmonics. Each harmonic corresponds to a time window
calculated as the period divided by the harmonic number.
To illustrate, harmonic 1 spans 365 days (representing
annual behavior), harmonic 2 spans 182.5 days (semester
behavior), and harmonic 30 spans 12 days (approximately
a week and a half). This array of harmonics spans a
timeframe from around a week and a half to a full year.
Although the analysis was performed with 30 harmonics,
we filtered out the most representative harmonics based
on their energy over one cycle (as shown in equation 2).
Figure 6 illustrates the harmonics for each time series
and their corresponding energy measured in per unit. We
use the harmonic with the highest energy as the basis to
convert the values. Figure 7 shows the time series after
executing standardization and variance-stabilizing steps
and their Fourier approximation.

Harmonic energy [pu]

) - ~ m s o © ~ © o

10
11
12
13
14
15

Harmonic number

®Duero ®Sil = Tajo

Figure 6: Harmonic energy: This plot illustrates the energy
associated with each harmonic. For clarity, only the initial
fifteen harmonics are displayed. The remaining harmonics
exhibit energy levels close to zero. The constant component
is omitted from the figure
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Figure 7: Blue curve: Historical data after standardization
and variance-stabilizing steps. Orange curve: Fourier approx-
imation considering 4 harmonics
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Each significant harmonic is represented by a multivariate
Gaussian distribution, taking into account the mean and
covariance matrix of all frames. This modeling approach
allows us to generate diverse seasonal trends while consid-
ering the correlation between the time series. On average,
across all frames, four harmonics are used to represent the
seasonal pattern of each time series.

To highlight the advantages of our proposed methodol-
ogy, Figure 8 compares the annual harmonic of the sea-
sonal pattern using both the static Fourier series and the
windowed Fourier series. Using the former approach, we
obtain a simplified representation of the seasonal pattern.
The variability in the generated scenarios stems solely
from the model of the residuals resulting from subtracting
the Fourier approximation of the historical data, with the
seasonal pattern remaining consistent across all scenarios.
In contrast, the windowed Fourier approach allows us
to derive a probabilistic model of the seasonal pattern,
resulting in more nuanced scenarios. This approach intro-
duces additional variability into the generated scenarios,
offering a more realistic representation of the seasonal
pattern.

2 ———static Fourier windowed Fourier

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
NNNNNNNNNNNNNNNNNNNNNNNNNNN

Figure 8: Comparison of annual harmonic in the seasonal
pattern: Static Fourier vs. Windowed Fourier

Residuals VAR model: The resulting residuals can be
adjusted using a linear model, such as the ARIMA models
family, or non-linear models, like neural networks. In this
study, we employ a vector autoregressive (VAR) model
to capture the correlations among the time series. Figure
9 shows the residuals obtained by subtracting the Fourier
approximation from the transformed historical data. Fig-
ure 10 and 11 display the autocorrelation and partial auto-
correlation plots of the residuals. Upon analysis of these
plots, the order of the VAR model is approximately 7. This
inference is based on the presence of values exceeding
the confidence interval for lags around 7 in the partial
autocorrelation plot.

However, in this work, we treat the order of the VAR
model as a configurable hyperparameter. To address this,
we employ a grid search approach to identify an appropri-
ate value for this hyperparameter Brownlee (2017). The
methodology is summarized as follows:

Duero

| A

Tajo
— Residuals

L bR i

] 2000 4000 6000 8000
Day

Figure 9: Residuals obtained by subtracting the Fourier
approximation from the transformed historical data
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Tajo
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Figure 10: Autocorrelation residuals plot

Duero

sil

Tajo
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Figure 11: Partial autocorrelation residuals plot

Split the dataset into training and test sets. We divided
our dataset into 80% for the training set and 20% for the
test set.

For each value assigned to the hyperparameter, we
generated the VAR model using the training set and
computed the prediction error on the test set.
Selecting the order of the VAR model that results in the
lowest prediction error in the test set.

In our study, the grid search for p (representing the or-
der of the VAR model) covers a range from 1 to 20.
As described in the methodology, the optimal result is
achieved when p is set to 8, as within this range, the
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error reduction is particularly pronounced. The decrease
in error becomes less significant for higher-order values.
For additional details, you can refer to Appendix C, which
provides matrices corresponding to the first and last lag of
the model.

Generation of synthetic series: The stochastic models for
the seasonal trend, residuals, and errors allow us to gen-
erate synthetic time series by sampling from each model
and aggregating the resulting components. After gener-
ating the time series, we apply inverse transformations
to restore the original distribution and scale. Since each
component considers the correlation of the time series, the
synthetic time series generated preserve both spatial and
temporal correlations. In this study, we generated 2000
synthetic series, of which 1000 were used to construct
scenario three for the optimization process. The remaining
time series were utilized in the simulation process to
evaluate the solution obtained. Figure 12 shows some
synthetic time series.

Evaluating the quality of artificially generated time series
compared to historical data is a key step when assessing
time series generation models. Several commonly em-
ployed approaches for this purpose include:

— Visualization: A well-generated artificial series should
visually resemble the actual series.

— Descriptive Statistics: Calculate fundamental descrip-
tive statistics for all series, such as mean and standard
deviation, and compare these statistics between the
artificial and actual series. Similar statistics indicate
that the artificially generated series captures essential
characteristics of the real series.

— Autocorrelation Functions: Calculate and compare
autocorrelation functions for all series. A well gen-
erated artificial series should exhibit autocorrelation
patterns that resemble those of the actual series.

— Model Fitting: Fit statistical models to the real and
artificially generated series and evaluate how well these
models fit the actual and generated data. A good fit
suggests that the artificial series shares structural sim-
ilarities with the real ones. It is important to note that
the distribution to be fitted should be multidimensional
in space and time, considering the spatial and tem-
poral correlations in the time series. This approach
requires fitting a multivariate probability distribution
for the actual and synthetic datasets and computing
a divergence measured, for example, using the Kull-
back—Leibler (KL) distance. This method was applied
in Yildiran (2019), using the k nearest neighbor (k-NN)
approximation of density functions Wang et al. (2009).

In our present research, we employ the first and second
approaches. Figure 12 demonstrates a selection of syn-
thetic time series that exhibit a striking resemblance to the
actual data. In Figure 13, we observe that the synthetic
data successfully replicate the mean and variation range
of the actual series. These synthetic time series can be

Table 1

Statistics. Actual vs. synthetic series.
act.: actual series

syn.: synthetic series

sd: standard deviation

Duero Sil Tajo

Parameter
act. [ syn. | act. [ syn. | act. [ syn.

mean [m3/s] | 279 | 266 | 189 | 187 | 160 | 158
sd [m?/s] 203 | 246 | 170 | 164 | 207 | 196
skewness 2.3 1.9 1.9 1.9 25 2.5
kurtosis 5.7 4.6 3.5 4.2 6.3 7.7

effectively utilized as training and test sets within the
framework of the stochastic optimization problem.

Duero

Duero

0 2 1 6 8 10
Month

Figure 13: Comparing averages and variability: Actual vs.
Synthetic data

Table 4.1 presents the first four moments for the multivari-
ate actual and synthetic data. Although we can observe
some differences, the resulting model is well-suited for
representing uncertainty within a stochastic optimization
problem. It allows us to generate scenarios with diverse
characteristics derived from historical data. Consequently,
the model can produce wet, average, and dry scenarios,
incorporating seasonal changes closely resembling those
observed in historical data.

Generation of scenario tree: We employed the k-means
method using n-dimensional points to generate the re-
combining scenario tree. The 1000 synthetic series were
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clustered at each stage, where each cluster represents
a node in the scenario tree. The transition probability
between two nodes was calculated by taking the ratio of
the number of series belonging to the initial and final
nodes simultaneously to the total number of series. The
node probability was computed as the ratio of the number
of series belonging to a specific node to the total number
of series.

Figure 14 illustrates the recombining scenario tree, con-
sidering 6 nodes per stage and 24 stages. This scenario
tree represents 623 ~ 10'® possible scenarios.

Figure 14: Recombining scenario tree. 6 nodes per stage

Hydro plants

Hydro plants are facilities designed to harness the energy
of flowing water, typically from rivers or reservoirs, and con-
vert it into electricity. These power stations utilize the kinetic
and potential energy of water to rotate turbines, generating
electrical energy through electromechanical conversion. The
production of energy is proportional to the water outflows,
with the proportionality function depending on the head of
the dam. In this work, we consider this function as a constant
term calculated based on the maximum water level of the
dam. This consideration does not affect the analysis of the
impact of our proposals, as we use the same model for both
the base case and the case studies with our proposals. For
further details on how the dependency of the water head
is considered in hydro energy production, refer to Cerisola
etal. (2012).

Thermal power plants

The thermal power plants convert heat energy into elec-
tric energy. In this study, we utilized data from the publica-
tion ESIOS - Red Eléctrica de Espafia (date of access: 2023),
associated with thermal plants in Spain. The cost function
for thermal production can be modeled using different heat
consumption curves (linear, piecewise linear) and multiple
fuel types Ramos et al. (1999). However, for simplicity,
we used a linear function to represent the variable cost of
thermal production. Equation 11a represents the variable
cost associated with the production of thermal power plants.

4.2. Mathematical model
We present a stochastic optimization model that min-
imizes the operational cost within the system. The model

incorporates constraints related to demand balance consid-
ering renewable resources, water balance in reservoirs (in-
corporating both physical and operational limits), reservoir
boundaries, the conversion of water to electrical energy, and
the natural water inflows uncertainty. A detailed mathemat-
ical formulation of the hydrothermal scheduling problem is
presented in Equations 11.

Nomenclature

Sets (calligraphic)

B, Set of demand blocks in stage s. b € B

H Set of hydro plants. h € H

P Set of pumping plants. p € P

R Set of reservoirs. r € R

R4,  Setof reservoirs downstream of reservoir r

R Set of reservoirs upstream of reservoir r

S Set of stages. s € S

T Set of thermal plants. t € T

H., Set of tuples (A, r) that relate each hydro plant A to
its corresponding reservoir r

P, Set of tuples (p, r) that relate each pumping plant p
to its corresponding reservoir » (Where the pumping
is directed to)

Q Set of scenarios in stage 5. w € Q

Parameters (uppercase)

DE;‘; Demand in block b and scenario w of stage s. [M W]
DU, Duration of each demand block b in stage s. [A]
EC,  Energy coefficient of hydro plant h. [kW h/ m3]
ITF?  Natural water inflows in reservoir r and scenario @

of stage s. [Am3]
PN  Penalty cost. [€/MW]

PRY  Probability of scenario w in stage s. p.u.

RV I, [Initial reserve level of reservoir r. [km3]

SPS‘Z Solar production. [M W]

TC,,; Thermal cost of each thermal plant ¢ in demand
block b and stage s. [€E/M W]

WPS“I’, Wind production. [M W]

GH,,GH) Lo.and Up. bound of each hydro h. [M W]
GT " E, Lo. and Up. bound of each thermal ¢t. [M W]
PMp, 241, Lo. and Up. bound of each pumping p. [M W]
RV _, RV, Lo.and Up. bound of each reservoir r. [Am?]

—sr’

Variables (lowercase)

aif?  Slack variable to avoid infeasibilities caused by vio-
lations in the lower bound of reservoir r in scenario
w of stage s. [km?]

cur, Curtailment of energy in scenario @ and demand
block b of stage s. [M W]

gh®  Production of a hydro plant A in scenario @ and
demand block b of stage s. [M W]

gty,,  Production of a thermal plant g in scenario » and
demand block b of stage s. [M W]
nse,  Non-supplied energy in scenario @ and demand

block b of stage s. [M W]

Jests D. Gémez-Pérez et al.: Preprint submitted to Elsevier

Page 13 of 22



ofy  Water outflows from a reservoir r in scenario  of
stage s. [km3]

pmg"bp Pumping of a pumping plant p in scenario @ and
demand block b of stage s. [M W]
pmw®, Pumped water from a reservoir r to another reservoir

in scenario w of stage s. [km’]
ro® Final reserve level of a reservoir r in scenario w of
stage s. [km?]
Initial reserve level of a reservoir r in scenario w of
stage s. [km?]

spy. Spillage from a reservoir r in scenario @ of stage s.
[km?]
min Z Z Z
s weQ beB
PR?DU, | 3’ TC,,gt% + PN (nset) | (11a)
t
+ PR°PN 2 aif®
s.t.
Z gt‘s"b, + Z gh‘s‘zh + SP‘S‘Z + WP?’b + nse‘;;, =
' " (11b)

V (s, 0,b)

w o} (0}
DEsh + cur, + mesbp,
»

@ __ o) w — (] — (0} — (0} > w
rv? =roi? + 1FY —of? —sp? — pmw? +aif?+

2 (spf:’r+0f’;’r>+ 2 pmw?, VY(s,0,r) (11c)

FER,(r) rER 44(r)

ey a(w)
rvi® = rv , Vs #{1},mw,r)

sr (s—Dr (1 ld)
roi® =RVI,, V(s={l},r)
of? =) 3 DU,ght, [EC, Y(s,a,r) (11e)

heM, beB;
pmw? = Y'Y DU pm? JEC,, V(s,0.r)  (11f)
PEP, beB;

GT, < gt <GT,, Y (s,0,b,1) (11g)
GH, <gh", <GH,, V(s,wbh) (11h)
PMp < pm‘;]bp < PMP, V(s,w,b, p) (111)
Mr < rui’r < Wr, Y (s,w,r) (11j)
RV _<rv” <RV,, V(s,o.r) (11K)
0<cur” <SP" + WP, V(s,0,b) (111)
0< nse‘;’b < DE’;’b, V (s, w, b) (11m)

Equation 11a defines the thermal cost function that needs
to be minimized across all scenarios and stages. This func-
tion incorporates various components, such as penalties for
non-supplied energy and violations to lower bounds of reser-
voirs. Artificial water inflows occur when the water level of
any reservoir falls below the allowed bound. The penalty cost
is around four times the average cost of thermal plants. 11b
is the demand balance equation; 11c and 11d represents the
water balance in every reservoir and the initial reserve in ev-
ery stage; | 1eis the energy conversion in the hydro plants; 1 1
represents the pumping process; 11g to 11m are the bounds
of every variable. In this model, we consider two types of
reservoir level limits: operational guiding determined by
long-term requirements, specific seasonal irrigation needs,
agreements with other stakeholders, and other factors, and
physical limits defined by the technical characteristics of the
dams.

The model exhibits what is known as relatively complete
recourse, meaning that for any feasible first-stage solution,
the second-stage problem remains feasible Rockafellar and
Wets (1976). This property is maintained through slack vari-
ables such as non-supplied energy (nse?,), production cur-
tailment (cur?’b), artificial water inflows (ai /), and spillage
(sp$.).

4.3. Evaluation and Comparative Analysis of
SDDP Proposals and Classic Algorithm
We propose the following methodology to evaluate the
quality of policies generated by both the standard Stochastic
Dual Dynamic Programming (SDDP) algorithm and the
proposed algorithms:

e Performance Metric: To measure the effectiveness of
the generated policies, we assess how well they help
address issues within the system. These issues include
situations like insufficient energy supply and deviations
from the recommended reservoir levels set resulting from
other analyses. Additionally, we analyze the impact of
increasing thermal energy production, a key indicator of
the system’s overall cost implications. All measurements
are presented consistently as per unit ratios, which are
standardized against the baseline results from the cl1 case.
The performance index is represented by the ratio of the
violation variable to thermal production. Our analysis
includes both average values and those at the 95th per-
centile. The latter is specifically considered to understand
how policies perform in challenging situations. This work
involves 1,000 distinct natural water inflow simulations,
ensuring a thorough evaluation across a broad spectrum
of hydrological conditions.

e Case studies: In our reference case study, we consider the
centroid of each scenario-tree node (cluster) as the repre-
sentative natural water inflows in the stochastic schedul-
ing problem. For the subsequent case studies, the water in-
flows are selected from points within each node (cluster).
These elements are chosen randomly in each iteration of
the forward and backward steps, following the Algorithm
3.
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e Policy Evaluation: To evaluate the performance of the
generated policies, we employ both the standard SDDP
algorithm and the proposed algorithms to obtain the op-
erating policy for each test case. Subsequently, we execute
simulations using these policies to assess their perfor-
mance according to the defined metrics. The simulations
are performed using the test set comprising 1000 synthetic
series.

e Statistical Analysis: We focus on the average and 95th
percentile of the simulation results to compute our perfor-
mance metric. Considering the 95th percentile, we cap-
ture the high-impact violations and evaluate the policy’s
performance under worst-case conditions.

o Sensitivity Analysis: To evaluate the robustness of the

generated policies, we perform sensitivity analyses by
introducing changes to various parameters or assump-
tions. In this context, we propose to repeat the analysis
employing a recombining scenario tree with four nodes
per stage for the base case (cll) and the case with our
proposals (sm123).
This sensitivity analysis enables us to investigate the influ-
ence of our proposed algorithms under different levels of
uncertainty granularity and scenario tree structures, pro-
viding valuable insights into the stability and adaptability
of our approach.

e Decision Support: Finally, we provide decision support
and insights based on the evaluation results. We com-
pare the performance of the algorithms and identify their
strengths and weaknesses.

4.3.1. Case studies

Table 2 summarizes the case studies analyzed in this
work. Note that case studies starting with "cl" use the classic
SDDP algorithm, and "sm" denote cases using the nodal
sampling method. Also, the suffix indicates when the al-
gorithm uses the classic stopping criterion (1), the classic
criterion plus convergence at each node (12), or uses all
proposed criteria (123)

4.3.2. Policy Evaluation. Statistical analysis

Convergence

Figure 15 presents the convergence of the first-stage
solution in each case study. The reference case (case cll)
achieved convergence in 51 iterations using the standard
stopping criterion. Similarly, the proposed nodal sampling
technique (case sm1) also converged in the same number of
iterations when employing the same stopping criterion.

The plots corresponding to our sampling proposal in
Figure 15 show a crossing point between the lower and
upper bounds. This phenomenon can be attributed to the
generation of Benders cuts during the backward step in each
iteration. Specifically, a distinct point within each cluster is
sampled in every backward path to create a Benders cut.
These samples can represent either more or less restrictive
operations, generating more or less restrictive Benders cuts.

As iterations progress, it becomes possible, within the
same node of the scenario tree, to obtain Benders cuts from

Table 2
Case studies definition

Description
This case solves the hydrothermal
scheduling problem with the classical
SDDP method (sampling in the reduced
scenario tree). The stopping criterion is
related to convergence in the first stage
(the algorithm stops when the LB is
included in the confidence interval of the
UP)
Similar to the previous case (cl1). A new
stopping criterion is added: convergence
in every node of the scenario tree (equa-
tion 9)
Similar to the previous case (cl12). A
new stopping criterion is added: minimum
number of Benders cuts in every node
according to its probability in the scenario
tree (equation 10)
This case solves the hydrothermal
scheduling problem with the SDDP
sml method and nodal sampling (section
3.1). The stopping criteria are the same
to case cll
Similar to the previous case (sml). The
stopping criteria are the same to case cl12
Similar to the previous case (sm12). The
stopping criteria are the same to case
cl123

Case study

cll

cl12

cl123

sm12

sm123

samples that lead to less restrictive operations, rendering
some cuts redundant, or to obtain cuts from samples that
produce more restrictive operations, creating dominant cuts.
Since the lower bound is calculated based on the current
stage variables along with an estimation of the future derived
from the dominant Benders cuts, it’s possible to overestimate
the future compared to the upper bound in a forward path that
uses less restrictive samples.

The lower bound is constructed using a future estima-
tion based on the dominant Benders cuts. In contrast, the
upper bound is created using actual values, which may
take favorable values during sampling. In the classic SDDP
algorithm, the same sample is evaluated in every node of
the scenario tree across iterations, avoiding the emergence
of dominant Benders cuts and, consequently, the crossing
between bounds.

In the asymptotic case, our sampling method converges
after evaluating all samples within each node, allowing the
identification of the most restrictive Benders cuts. Thanks to
this property, our sampling method yields a more robust op-
erational policy, maintaining the performance of the classic
algorithm.

Table 3 shows that when applying the new stopping
criteria to the SDDP algorithm (cases cl12, cl123, sm123),
the number of iterations increased within a range of 6 (as
observed between case sm123 and sml) to 28 (as seen
between case cl123 and cll). This increase was anticipated
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Table 3
Case studies performance
Case study | Iterations | Time [s] | OF [M€]
cll 51 4284 10.082068
cl12 71 5964 10.082318
cl123 79 6636 10.082331
sml 51 4284 10.698785
sml2 51 4284 10.698785
sm123 57 4788 10.707610

since the convergence in scenario-tree nodes other than the
first one is being evaluated.

It is worth mentioning that the algorithm incorporates
the stopping criteria after the first 50 iterations to ensure
an adequate number of samples for calculating reliable con-
fidence intervals. Additionally, the paths selected for the
forward step remain consistent for both the standard and
proposed nodal sampling algorithms throughout iterations.
This implies that we employ the same set of random numbers
for both sampling methods (common random numbers). This
uniformity guarantees an accurate evaluation of how the
choice between selecting the centroid or any value within the
scenario-tree node influences the resulting policy, regardless
of the specific path chosen.

Each iteration in the nodal sampling proposal incurs a
computational burden comparable to that of the classical
SDDP algorithm. The primary distinction lies in the addi-
tional sampling performed within each node in the proposed
algorithm. However, the time spent on this sampling is
negligible compared to the overall problem-solving time
within the node.

On average, each iteration took 84 seconds to complete.
Table 3 provides information on the number of iterations and
the corresponding computational time for each case study.
We can observe that the new stopping criteria introduce
slight changes in the objective function. However, the most
significant impacts occur in the operating policy derived
from the stochastic optimization program. This is a conse-
quence of the new stopping criteria assessing nodes other
than the initial one. As this operating policy serves as input
for conducting future simulations, the accuracy of this policy
becomes increasingly important.

Performance metrics

Figure 16 presents the water level in the Duero basin, one
of the largest basins in Spain. The water reserves obtained
with the proposed nodal sampling technique are higher than
those obtained with the reference technique. This difference
can be attributed to the fact that the proposed technique
evaluates natural water inflows that are more critical for the
system than the mean (centroid) in each node of the scenario
tree. Consequently, the operational policy generated by our
proposals prepares the system for more scenarios, resulting
in slightly higher water storage.

Figure 17 presents the empirical distribution functions of
the bi-annual thermal production of the system for each case
study based on the samples in the test dataset. As depicted

cl1 Z_inf =10.08 M€
2_sup_mean = 10.27 M€

Z_inf =10.70 M€
Z_sup_mean = 10.30 M€

OF [M€]
E 8
Me
8

Z_inf =10.70 M€

cl12 Z_inf =1008 M€

OF [Mé]
Me
g

- inf =10.09 M€ sm123 Z_inf =10.71M€
_sup_mean = 10.13 M€ Z_sup_mean = 10.28 M€

OF [Me]
My

gggeggeeggegegegasee

Figure 15: Convergence of the SDDP algorithm in the first
stage

Figure 16: Volume level in Duero basin

in the figure, the thermal production of the system is around
279 TWh with a 95% probability. Figure 18 shows the
empirical distribution functions of reservoir level violations
in relation to the thresholds set by the operators. These
thresholds encompass a combination of factors, including
long-term requirements, specific seasonal irrigation needs,
agreements with other agents, and additional considerations.

Both Figures 17 and 18 depict minimal variations in
thermal production across the different policy scenarios.
Nonetheless, a significant reduction in violations of reservoir
thresholds is evident, primarily attributed to the sampling
method we have introduced.

Table 4 shows a comprehensive overview of the perfor-
mance of each operational policy within the test dataset. It
presents the average and the value with a 95% probability for
both bi-annual thermal generation and reservoir-threshold
violations. The values in this table represent the ratios of
the results for each parameter in the respective case study
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Figure 17: Empirical distribution of thermal production
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Figure 18: Empirical distribution of violations in reservoir
threshold levels

Table 4
Summary of values for variables in the policy assessment

Case study Thermal generation Reservoir violation
mean | P95th mean | P95th
cll 1.0000 1.0000 1.0000 1.0000
cl12 1.0000 1.0000 1.0231 1.0245
cl123 1.0000 1.0000 1.0233 1.0268
sml 1.0006 1.0001 0.8070 0.8536
sm12 1.0006 1.0001 0.8070 0.8536
sm123 1.0007 1.0001 0.8268 0.8646

compared to those obtained in the case cll. In other words,
each value represents the percentage (expressed per unit) of
results in relation to the baseline case, cl1, which utilizes the
standard method. For instance, the value 0.8536 located in
the row sm/ and columns Reservoir violation, P95, indicates
that in the quantile 95, the violation in reservoir thresholds
is 0.8536 times the violation given in the base case.

Figure 19, presents the behavior of the performance
metric defined previously. This metric represents the ratio
of the reduction in the violation variables to the increase in
thermal generation resulting from implementing the propos-
als discussed in this paper. This index shows a reduction of
roughly 20% in violations of reservoir threshold levels while
only incurring minor adjustments in thermal generation pro-
duction.
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Figure 19: Evolution of the ratio between the reservoir thresh-
old violations to the increase of thermal generation

4.3.3. Sensitivity analysis

In this sensitivity analysis, we apply our proposals within
a more compact scenario tree. Specifically, we utilize a four-
scenario tree, with each cluster encompassing more extreme
scenarios. This is a result of a reduction in the number
of nodes per stage when compared to previous cases. This
evaluation focuses on assessing the operation of resources,
computational performance, and, most importantly, the con-
sistency of our proposals, as well as our proposals enhance
the operational policy in extreme scenarios.

Convergence

Figure 20 shows the convergence of the standard SDDP
algorithm and our proposed methods for the four-node sce-
nario tree. The lower and upper bounds appear to closely
mirror those achieved in the case of the six-node scenario
tree. In terms of iteration count, in the base case (cll), the
number of iterations remains consistent with the previous
section (six-node scenario tree). However, in the case study
sm123, the problem was resolved in 52 iterations, five it-
erations fewer than in the six-node scenario tree. This is
attributed to the more compact representation of uncertainty.
The time required for each iteration remains in line with the
description provided in the preceding section, approximately
84 seconds.
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Figure 20: SDDP algorithm convergence in a four-node sce-
nario tree

001
ito0s

Performance metrics

Figures 21 and 22 exhibit a similar pattern as in Figures
17 and 18. Thermal production remains nearly identical
when comparing the classic algorithm to our proposed ap-
proach. However, a noticeable reduction in reservoir thresh-
old violations is evident. Thermal production and reservoir
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Table 5
Four-Node vs. Six-Node Scenario Tree Comparison
Parameter Four-node | Six-node
Objective Function [M€] 10.838 10.707
Iterations 52 57
Time [s] 4368 4788
Thermal generation P95th [TW h] 279 272
Reservoir violation P95th [Am?] 64 65

violation values demonstrate similarities between the four-
and six-node scenario trees.
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Figure 21: Empirical distribution of thermal production. Four-
node scenario tree
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Figure 22: Empirical distribution of violations in reservoir
threshold levels. Four-node scenario tree

Four-Node vs. Six-Node Scenario Tree Comparison

Table 5 provides a summary comparing some parame-
ters for the results obtained using our proposals with both
four- and six-node scenario trees. These comparisons are
performed in the case study sm123.

4.4. Discussion
4.4.1. About the uncertainty modeling

In this work, we have developed a time series model
to represent uncertainty, focusing primarily on generating
synthetic water inflow scenarios, as illustrated in Figure
12. Through visual inspection and analysis of descriptive
statistics (Figure 13 and Table 4.1), the model demonstrates
favorable performance, making it well-suited for modeling
uncertainty within a stochastic program. In future research,
it may be worthwhile to research alternative methods and
metrics to assess the model’s effectiveness in generating
scenarios.

4.4.2. About decision support

The policy enhancement proposed in this study can have
several impacts on various aspects of the algorithm. Below
are some key elements that may be affected:

Computational burden: The proposed nodal sampling
technique in this work introduces two additional sampling
processes compared to the standard SDDP method, specif-
ically one in the forward step and another in the backward
step. While it is true that these other sampling processes in-
cur in some additional computational burden, it is important
to note that this burden is negligible compared to the time
required for solving the linear program in each iteration. As
a result, the impact of the added computational burden is
minimal.

Iteration number: In the proposed nodal sampling tech-
nique, it is important to note that the algorithm does not
guarantee a specific number of iterations equal to or less
than the classical algorithm. However, in our case studies,
we observed that the number of iterations in the proposal
was never greater than those of the classical SDDP method.
This can be attributed to several factors.

Firstly, the nodal sampling method preserves the struc-
ture of the scenario tree, including the same number of nodes
and the same transition probabilities between nodes. This
helps to maintain a similar overall iterative process.

Secondly, the samples of uncertain variables evaluated
within each node in the proposed nodal sampling technique
can potentially generate more restrictive Benders cuts than
those generated by the centroid. These more restrictive cuts
can lead to faster convergence of the algorithm.

It is important to mention that including complemen-
tary stopping criteria can increase the number of iterations.
These stopping criteria are adjustable in real applications
to balance the trade-off between policy accuracy and com-
putational burden. For example, the measure of statistical
closeness between bounds in stages other than the first
one (as defined in equation 9) can be implemented only
in the initial stages where the impact of decisions is more
significant. Similarly, the criterion of the minimum number
of Benders cuts (as defined in equation 10) in each node of
the scenario tree can be adjusted accordingly.

Solution quality and robustness: In the proposed nodal
sampling technique, evaluating more samples of the uncer-
tain variables enables us to obtain a more robust operating
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policy. By considering more samples, we can capture a
wider range of potential scenarios and make more informed
decisions.

The sampling method proposed in this work mitigates
the effects of discretizing uncertainty (as reflected in the
number of nodes in the recombining scenario tree). This is
attributed to the retention of time series data from the train-
ing set after the clustering process, and they are considered in
both the forward and backward steps of the SDDP algorithm
for the recombining scenario tree. This capability enables us
to consider a more simplified scenario tree without sacrific-
ing solution accuracy. Using a compact scenario tree results
in faster resolution of stochastic problems.

Contrary to algorithm performance concerns, the pro-
posed nodal sampling can lead to faster convergence. This
is because evaluating more samples allows us to identify
critical scenarios for generating more restrictive Benders
cuts. These cuts provide valuable information that helps im-
prove the solution’s quality and accelerate the convergence
process.

Increasing policy costs: Considering a more detailed
representation of uncertainty, the solution to the stochastic
problem can result in a cheaper or more expensive policy, de-
pending on the impact of uncertain parameters on the cost of
the objective function. In the case studies, we can evidence
a reduction between 16% to 20% in violation variables by
marginal increases in thermal generation (compared to the
base case, cll). This indicates that the resulting operating
policy from the proposed nodal sampling method is prof-
itable.

5. Conclusions

This paper proposes an approach to model seasonal pat-
terns in time series data using Fourier series decomposition
by windows. Unlike traditional methods that assume fixed
coefficients for the entire time series, our approach allows for
the characterization of seasonal trends in different periods
of the time series. This enables the generation of stochastic
seasonal patterns, preserving the spatiotemporal correlations
in the data. We can capture a broader range of possible
system states and uncertainties by generating synthetic time
series with stochastic seasonal patterns. The artificial time
series are integrated into the SDDP framework, allowing
for exploring larger solution space to develop more robust
operating policies.

The proposed nodal sampling technique in the stochastic
dynamic dual programming (SDDP) framework improves
the robustness of the operating policy by considering more
realizations of uncertain parameters. It allows for a more
thorough solution-space exploration without significantly
increasing the computational burden. This method maintains
the performance of the standard SDDP algorithm while
capturing the potential risks associated with more extreme
uncertainties, resulting in more robust policies.

This sampling method also mitigates the effects of dis-
cretizing uncertainty (as reflected in the number of nodes
in the recombining scenario tree). This capability allows us

to employ a more streamlined scenario tree without com-
promising solution accuracy. Using a compact scenario tree
results in faster resolution of stochastic problems.

The proposed complementary stopping criteria are use-
ful in achieving more robust policies in stochastic pro-
gramming optimization. By incorporating additional Ben-
ders cuts in all scenario-tree nodes, the representation of the
cost-to-go function can be enhanced. Although this may in-
crease the number of iterations, these criteria can be adjusted
to balance solution quality and computational efficiency. As
a result, these stopping criteria contribute to the generation
of more robust policies without significantly impacting the
overall performance of the algorithm.

In our case studies, we found that the proposed nodal
sampling method required fewer iterations than the classical
method. Additionally, we observed an improvement in pol-
icy quality, which we evaluated through simulations using
the test dataset. To assess the accuracy of the stochastic
policies, we conducted a statistical analysis of the violation
variables resulting from constraint violations and the ther-
mal production over the planning horizon. As an evaluation
metric, we introduced a ratio that considers the change in the
violation variables and the thermal production.

In future work, we aim to explore the modeling of the
resulting residuals, obtained after subtracting the seasonal
trend using Fourier series decomposition, with alternative
techniques such as machine learning or other time series
analysis methods. This will allow us to evaluate the per-
formance of these techniques in capturing the remaining
patterns in the data, particularly in high-dimensional spaces.

In addition, we plan to extend the proposed nodal sam-
pling technique to a multi-horizon stochastic optimization
framework, both at the strategic and operational levels. We
can obtain more robust and accurate policies for complex
systems by applying this sampling method in a multi-horizon
context.

A. Appendix. Synthetic time series
generation. Mathematical concepts

A.1. Standardization

The initial step in the process is to standardize each time
series by subtracting the mean and dividing by the standard
deviation. This procedure ensures that every time series has
a mean of zero and a standard deviation of one, enabling
comparability between all series.

Y() = y](t)_l’l]’.”7yi(t)_”i (12)
(23] [oF}

where, y;(¢) represents each dimension i of the multi-
variate space as a function of time, and y; and o; stand for
the mean and the standard deviation of each time series i
respectively.

A.2. Variance-stabilizing transformation
In contrast to Talbot et al. (2020), this study proposes
to transform each non-stationary series into a stationary
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one as the next step. A strictly stationary time series (or
stochastic process) is one whose properties or probabilities
do not change over time, meaning its cumulative distribution
function is independent of time. A time series is considered
weakly stationary or of order 2 if only the moments up
to order 2 (such as the mean, variance, and covariances)
are finite and independent of time. Since time series theory
assumes Gaussian processes (i.e., weakly stationary pro-
cesses), detrending or transformation becomes necessary to
make the data conform to this assumption. Below are some
techniques to stabilize variance:

e Delta method: This method aims to find a functional
transformation that ensures constant variance of the
data. The underlying assumption is that the variance
varies functionally with changes in the mean (o-l.2 =
¢ f(u;)) Wei (2006). The functional transformation is
obtained by solving the equation 13

dy;(t) (13)

1
T (1)) = _
(@) / VIG0)

e Box-Cox transformation: The Box-Cox transforma-
tion, introduced by Box and Cox in 1964, involves
finding the optimal parameter A in Equation 14 that
maximizes the symmetry and normality of the trans-
formed distribution. Once this parameter is obtained,
the data can be transformed by applying Equation 14

i -1

T ()’i(t)) = 7

(14)

e Probability distribution transformation: In this ap-
proach, the original data representing a probability
distribution function (PDF) are transformed into data
with a new distribution. For time series, it is required
that the distribution of the data be Gaussian, which
ensures stability in mean and variance and satisfies the
assumption of normality that is typical in time series
theory. Equation 15 is used to transform the data,
where N represents the inverse of the cumulative
distribution function of the Gaussian and F represents
the cumulative distribution function of the data. The
determination of F can be achieved through statistical
methods, either parametric or non-parametric.

T (y,0) = N7 (F (y,0)) (15)

A.2.1. VAR model to residuals

Removing the seasonal trend (Equation 3) from the time
series reduces the number of lags required to fit a parametric
model. As a result, we can increase the complexity of a
multivariate model while maintaining a low computational
burden. Conversely, fitting a model with the original data
would require a significantly higher number of lags, resulting
in a more time-consuming model.

Conventional methods, such as VARMA models, neural
networks, etc., can be applied since the residuals remain a
multivariate time series. For this study, VAR models were
utilized due to their ease of adjustment, enabling us to
incorporate more lags. Equation 16 shows the model for the
residuals.

r,=Ar e A+ N, (4 Z) (16)

where r, denotes the residuals, Aj corresponds to matri-
ces that establish correlations between the multivariate sig-
nals and samples at lag j of these signals, and N'e (e, Z,)
represents a multivariate Gaussian model that characterizes
the errors inherent to the VAR model.

A.2.2. Generation of synthetic series
The generation of synthetic series involves the following
steps:

e Generating a sequence of residuals using the VAR
model 16. This is done by recursively appending the
calculated samples for each time step to the historical
series for calculating the next sample.

e Generating a seasonal pattern using equations | and 4.

o Aggregating the seasonal and residual parts and ap-
plying inverse transformations to recover the original
distribution functions, means, and variances.

e Repeating this process for the desired number of syn-
thetic series to be generated.

B. Appendix. Convergence proof

To demonstrate the convergence of the proposed ap-
proach, let us consider a two-stage stochastic problem as
shown in Equation 17

min ¢\ X, + P05 (ex* (17a)

e 1% ;;2(0(22)

S.t. A X, =b,; (17b)
Ay X; + ApXS = b, V(@, ) (17¢)

where £ is the index for each element within the cluster
w, and pfo is the probability associated with each element.
Formulation 17 can be rewritten as the one shown in 18

min ¢, X, + ) pYO°(x,) (18a)
xl.x;“5 121 ; ) 1
S.t. A X, =b, (18b)
where Q“(x;) is,
0"(x)= min P Z Xy (192)
% ¢
st ApXxyS=bY - Ayx,, V() (19b)

As the problem Q®(x,) is separable, it can be represented
as the sum of minimizing the costs of each individual &.
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_ € ;
Q(x)) = pf, ), min Q7 (x)) (20)
¢ X%
where Qg’(xl) is
QU(x) = nggl ox;* (21a)
X
s.t. ApXsE = b3 — Ay x, (21b)

and its dual formulation is

(W T W
Qu(x)) = max (b — Ayx,) 3* (22a)
2
s.t. Al nY <c, (22b)

For each Q?, the polytope A;zzr;’ £ < ¢, serves as the
feasible region for the optimization problem. It can be noted
that this polytope is the same for all the points belonging to
the cluster (A2, 77 f<e, > AL, 7§ < ¢)), 50 each one can
be solved by enumeration of solutions, as shown in equation
23. Note that the superscript & is eliminated from z since, as
mentioned before, the polytope is the same for each Q%. The

superscript i denotes each extreme point of the polytope.

Qg’(xl)= r%})n 0, (23a)
2

st 09> (b% - Ayx,) 22 V0

¢ (23b)

Based on the above equations, a piecewise linear approx-
imation can replace the future cost function for each node
in the scenario tree. These equations are the Benders cuts,
expressed as either equation 24 or 25. Equation 26 represents
the master problem with the Benders cuts.

T o
07 > (b‘f - A21x1> 2 (24)
05 > f) + 75 Ay (X] —x1) (25)
i + ) PRY§Y 26
min o em QPR (26
s.t. Ayx; =b, (26b)
07 > f1+7y Ay (X —x)), Y(w.i)  (26c)

The SDDP algorithm iteratively computes Benders cuts
for each dual variable in the second stage through a forward-
backward process. The polytope of the dual formulation
of the subproblem is finite and independent of the primal
solution proposed by the master problem. In the worst-case
scenario, all vertices may need to be calculated to find the
Benders cuts representing future cost. This demonstrates that
the algorithm proposed in this work is finite and converges
to a solution.

It is worth mentioning that feasibility cuts can be avoided
by introducing slack variables and penalizing them in the
objective function. The penalty values must be chosen ap-
propriately to ensure that the slack variables converge to zero
by the end of the optimization process. This method allows
only the utilization of optimality Benders cuts, eliminating
the need for additional cuts to ensure feasibility in the
problem formulation.

C. Appendix. VAR model matrices

In section 4.1, we fitted a VAR model of order 8 to the
residuals obtained by subtracting the seasonal pattern from
the historical data. The matrices for the first and last lag, as
well as the covariance matrix for the errors, are presented
below:

[ Duero Sil Tajo
A = Duero 0.4111 0.0261 0.1067 @7
1 Sil  0.1005 0.6942 0.0810
| Tajo 0.1241 0.0592 0.3279
[ Duero Sil Tajo
Ao = Duero —0.0803 0.0354 —0.0489 28)
8 Sil —-0.0549 -0.1514 -0.0190
| Tajo —0.0234 0.0017 -0.0223
[ Duero  Sil Tajo
s = Duero 0.1202 0.0119 0.0187 (29)
€ Sil ~ 0.0119 0.0694 0.0148
| Tajo  0.0187 0.0148 0.1408
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